Trigonometry (MAC 1114)

Review Problems for Final Exam

1. Covert each of the following degree measures to radians. Leave answers as multiple of %

a) 135°

b) 12°

c) -315°

2. Covert each of the following degree measures to degrees. a) $\frac{7\%}{6}$ b) $\frac{11\%}{3}$ a) 5 radians

3. The terminal side of angle Ł in standard position goes through (-3, -4). Find the values of the six trigonometric functions of Ł.

4. Draw 135° in standard position. Find a point on the terminal side and then find sin 135°, cos 135°, tan 135° without using a calculator.

a) $y = \sin x$ b) $y = \cos x$ c) $y = \tan x$ d) $y = \csc x$ e) $y = \sec x$ f) $y = \cot x$.
17. Find the amplitude, period, and phase shift of the function, and sketch the graph of one compete period. a) $y = -\sin 3x$ b) $y = \cos (x - \frac{\%}{2}) + 1$
18. Evaluate the exact values of the following without a calculator. a) $\tan(\cos^{-1}(\frac{2}{7}))$ b) $\csc(\tan^{-1}(\frac{3}{4}))$
19. True or False:
a) $\sin(-\xi) = -\sin \xi$ b) $\sec(-\xi) = \sec \xi$ c) $\tan(-\xi) = \tan \xi$
d) $\cot \xi = \frac{\cos \xi}{\sin \xi}$ e) $\sin \xi = \frac{1}{\sec \xi}$ f) $\sec \xi = \frac{\text{adjacent}}{\text{hypotenuse}}$
g) $1 + \cot^2 \xi = \csc^2 \xi$ h) $\tan \xi = \frac{\text{adjacent}}{\text{opposite}}$
20. Fill in the blanks without using a calculator:
a) $\tan 53^\circ = \cot $ b) -225° is in quadrant
c) cos is positive in QI and d) tan is positive in QI and
e) $1 + \tan^2 \xi = $ g) $\csc \xi = \frac{1}{?}$
Verify the following identities.
$21. \frac{1 \cos}{1 \cos} = (\csc \cot)$ $22. \frac{\cos}{\cos} = \sin \cos$

Find the missing parts of each of the following triangles.

39.
$$a = 39$$
 cm, $C = 32^{\circ}$, $B = 110^{\circ}$ 40. $b = 100$ ft, $c = 60$ ft, and $C = 28^{\circ}$

41.
$$a = 16 \text{ m}, c = 7 \text{ m}, B = 95^{\circ}$$
 42. $a = 15 \text{ ft}, b = 25 \text{ ft}, c = 28 \text{ ft}$

Find the area of each of the following triangles:

43.
$$a = 4$$
, $A = 40^{\circ}$, $B = 60^{\circ}$ 44. $a = 76.3$ ft, $b = 109$ ft, $c = 98.8$ ft

Eliminate the parameter t from each of the following parametric equations.

45.
$$x = 3 \sin t$$
 and $y = 4 \cos t$ 46. $x = \sec t$ and $y = \tan t$

47.
$$x = 4 \sin t - 5$$
 and $y = 4 \cos t - 3$ 48. $x = 5 \sin t$ and $y = -2 \sin t$

49. Write the following complex number in trigonometric form, with \pm between 0 and 2% $4\sqrt{3}-4i$

50. Given
$$z_1 = 3(\cos 60 \quad \sin 60)$$
 and $z_2 = 2(\cos 90 \quad \sin 90)$, find z_1z_2 and z_1/z_2 .